
Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Code Generation from Applicative Terms
Seminar on AI-Planning

Jan Bessai

1 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Outline
Code Generation

Goal
Architecture
Applicative Terms

Dependency Injection
Introduction
Advantages
Frameworks

λ-Terms to Injection Code
Similarity
Implementation

Demo
Conclusion and discussion

Summary
Outlook
Feedback

2 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Goal of a Code Generator

Same as for compilers:
▶ Translate code representations while obeying semantics

Because the input language is:
▶ more simple and closer to the user domain
▶ only an intermediate representation

(e.g. within compilers)
▶ output language of another generator

3 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Abstract Description (Bisimulation)
Given:

▶ Source programs PS, target programs PT
▶ Functor F : Programs → Processes

▶ F(P) = (InputP → OutputP)

▶ Execution coalgebras runS, runT and runST
▶ Relation R ⊆ PS × PT denoting semantic equivalence

..PS. R. PT.

F PS

.

F R

.

F PT

. πS. πT.

runST

.

runS

.

runT

.

F (πS)

.

F (πT)

Compute R, such that the above diagram commutes
(πS and πT are projections)

4 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

In Practice

..PS. R. PT.

F PS

.

F R

.

F PT

. πS. πT.

r

.

runST

.

runS

.

runT

.

F (πS)

.

F (πT)

▶ runs usually only given as an informal (textual)
description

▶ No way to execute source programs directly
▶ Relation R is seen as a function r : PS → PT
▶ We are interested in a program computing r

5 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Architecture of a Code Generator

......Parser.Source
Code

. Type- /
Modelchecker

.

Transformation
Engine

.

.

Rule
Repository

.

Optimizer

.

Unparser

.

Target
Code

.. AST.

AST

.

AST Info

.

Rules

.

Target AST

.

Optimized Target AST

..

r

Based on [1] 6 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Applicative Terms as an Input Language

Applicative terms are a very convenient input language:
▶ Simple grammar

▶ Λ → V | (Λ) Λ
▶ Λ → λ V .Λ

▶ Well understood type systems
▶ Provable termination properties if properly typed

(due to strong normalization [5, 2])
▶ Expressive enough for first order logic

(Curry-Howard Isomorphism [5])
▶ Efficient reduction schemes (e.g. via DAGs [4])
▶ Automatic generation via type inhabitation [3]

7 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Arbitrary Programming Languages as Output

There are very limited requirements on output languages
▶ A template for some form of n-ary function calling is

needed:
▶ ((f)x)y ⇒ $F($X1, $X2)[$F := f, $X1 := x, $X2 := y]

▶ The typesystem of the output language must not be
too restrictive

▶ e.g. there is no translation from λ∩ to λ →
(since ⊢∩ λ x .(x)x : (σ ∩ (σ → τ)) → τ)

▶ For abstractions new functions have to be declared
▶ Some way to return higher order functions is required

(e.g. via function pointers)

8 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Dependency Injection

9 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Every Day Code (Java)

1 public class MissileLaunchpad {
2 public void fireMissile() {
3 Missile m = new NuclearMissile();
4 m.launch();
5 }
6 }

Problems:
▶ Interface Missile used, but advantages of subtype

polymorphism ignored
▶ Always fires nuclear missiles
▶ Mixture of concerns: launch pads should not produce

missiles

9 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Version using Dependency Injection

1 public class MissileLaunchpad {
2 private final Missile m;
3
4 MissileLaunchpad(Missile m) {
5 this.m = m;
6 }
7
8 public void fireMissile() {
9 m.launch();

10 }
11 }

▶ Now the user can decide, which missile type is fired

10 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Possible Variations (Setter Dependency Injection)

1 public class MissileLaunchpad {
2 private Missile m;
3
4 public setMissile(Missile m) {
5 this.m = m;
6 }
7
8 public void fireMissile() {
9 m.launch();

10 }
11 }

▶ Adheres to standard for Managed Java Beans
(JSR-316), which requires a 0-argument constructor

▶ Problematic if setup code fails to call setter before
usage

▶ Undefined behavior if same missile is fired twice

11 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Possible Variations (Factory Dependency
Injection)

1 public class MissileLaunchpad {
2 private final MissileFactory missileFactory;
3
4 MissileLaunchpad(MissileFactory f) {
5 this.missileFactory = f;
6 }
7
8 public void fireMissile() {
9 Missile m = missileFactory.createMissile();

10 m.launch();
11 }
12 }

Even better approach:
▶ fireMissile can be called more than once

12 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Advantages (Composition & Reuse)

new MissileLaunchpad(new ISSModuleCarrierRocket())

Components written in Dependency Injection style
▶ rely on composition by design
▶ can be reused differently in different contexts
▶ only ask for dependencies they really need

▶ less global state
▶ no more traditional use of singletons

13 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Advantages (Testing)

Source: http://testweb.science.uu.nl/AMS/Radiocarbon.htm

Mock objects can be passed into constructors for testing
▶ Testing the MissileLaunchpad class can be done without

havoc

14 / 27

http://testweb.science.uu.nl/AMS/Radiocarbon.htm

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Frameworks

Dependency Injection frameworks help to wire things up:
▶ provide standardized ways to create factory code
▶ automatically search for ways to fulfill dependencies
▶ manage repositories of accessible objects
▶ control life cycles (singleton, request scope,…)

Frameworks exist for many language environments
(Java, .NET, C++, Python ...)

▶ even standardized to some extend (e.g. JSR-330)

15 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

λ-Terms to Injection Code

16 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Structural connection (1)

Given any class:
1 class X {
2 public X(Y y, Z z) { ... }
3 }

▶ We create a constructor term
X : (Y, Z) → X

▶ Which we can curry:

X:(Y,Z)→X⊢X:(Y,Z)→X
y:Y⊢y:Y z:Z⊢z:Z

y : Y, z : Z ⊢ (y, z) : (Y, Z)
(∧I)

X : (Y, Z) → X, y : Y, z : Z ⊢ X(y, z) : X
(→E)

X : (Y, Z) → X ⊢ λyz.X(y, z) : Y → Z → X
(2×→I)

16 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Structural connection (2)

We may reason about an applicative term M and later
replace a free variable with our curried constructor:

▶ By the free variables lemma:
x : Y → Z → X ⊢ M : σ

x : Y → Z → X, X : (Y, Z) → X ⊢ M : σ
▶ Substitution lemma:

X:(Y,Z)→X⊢λyz.X(y,z):Y→Z→X x : Y → Z → X, X : (Y, Z) → X ⊢ M : σ

X : (Y, Z) → X ⊢ M[x := λyz.X(y, z)] : σ

17 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Structural connection (3)

Now we can reason with our constructor placeholders as
variables and application as the only rule:

Γ, x : σ ⊢ x : σ

Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ (M)N : τ

Thus using the Curry-Howard-Isomorphism:
▶ Dependency Injection style object creation ∼=

Hilbert-Style proofs using constructor types as axiom
schemes :-)!

18 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

A note on types
For inheritance and interfaces we add:

▶ if X instanceof Y then X ≤ Y
▶ if X implements Y, Z then X ≤ Y ∩ Z
▶ if X instanceof XParent, Y instanceof YParent then

XParent → Y ≤ X → YParent
Further we allow typesafe (up)casting by adding:

▶
Γ ⊢ M : σ ∩ τ

Γ ⊢ M : σ

Γ ⊢ M : σ ∩ τ

Γ ⊢ M : τ
(∩E)

▶
Γ ⊢ M : σ Γ ⊢ M : τ

Γ ⊢ M : σ ∩ τ
(∩I)

▶
Γ ⊢ M : σ σ ≤ τ

Γ ⊢ M : τ
(≤)

Now we have an applicative fragment of λ∩ [2]
▶ Our bisimilarity relation R relates object construction

with equally typed λ-terms :-)!

19 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Implementation

Things to consider during implementation:
▶ Target language

▶ Automatic rule repository generation by constructor
introspection

▶ Use of a dependency injection framework
▶ Generated code should control a framework to create

objects
▶ Framework should support identifiers for multiple values

of the same type
▶ I have chosen Java and the Spring framework to create

a tool called Syringe

20 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Syringe (Overview)

......NF
β-Reduction

.λ-Term
AST

. Constructor
Introspection

. Java
Classes

.

Interpreter

.

.

Rule Repository

.

JDOM

.

Spring
XML

Fragment

..

Applicative AST

..

Higher order Rules

.

Rules

.

XML AST

..

Syringe

21 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Software Architecture (Term model)

22 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Software Architecture (Interpreter)

23 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Demo

24 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

What we have seen today

▶ Goals and common structure of code generators
▶ Bisimulation

▶ Properties of applicative terms as input languages
▶ Dependency injection in relation to applicative terms

▶ Hilbert style object construction
▶ Bisimilarity relation on types

▶ Implementation of a code generator

24 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Things I’d like to to

▶ Add a typechecker to Syringe
▶ Add support for setter injection
▶ Implement better reduction strategies
▶ Real proof of bisimilarty properties of R

25 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Feedback or Questions?

▶ Thank you :-) !

26 / 27

Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

References
[1] Czarnecki, K., Eisenecker, U.: Generative Programming

Methods, Tools, and Applications. Addison-Wesley,
Amsterdam, Netherlands (2000)

[2] Ghilezan, S.: Strong normalization and typability with
intersection types. Notre Dame Journal of Formal Logic
37(1), 44–52 (1996)

[3] Rehof, J., Urzyczyn, P.: Finite combinatory logic with
intersection types (extended version). Tech. Rep. 834,
Technische Universität Dortmund, Department of
Computer Science, Dortmund, Germany (February 2011)

[4] Shivers, O., Wand, M.: Bottom-up β-reduction: Uplinks
and λ-dags. Fundamenta Informaticae 103(1–4),
247–287 (2010)

[5] Sørensen, M.H.B., Urzyczyn, P.: Lectures on the
curry-howard isomorphism (1998),
http://ls14-www.cs.tu-dortmund.de/images/d/
db/Curry-howard.pdf

27 / 27

http://ls14-www.cs.tu-dortmund.de/images/d/db/Curry-howard.pdf
http://ls14-www.cs.tu-dortmund.de/images/d/db/Curry-howard.pdf

	Code Generation
	Goal
	Architecture
	Applicative Terms

	Dependency Injection
	Introduction
	Advantages
	Frameworks

	-Terms to Injection Code
	Similarity
	Implementation

	Demo
	Conclusion and discussion
	Summary
	Outlook
	Feedback

