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Goal of a Code Generator

Same as for compilers:
▶ Translate code representations while obeying semantics

Because the input language is:
▶ more simple and closer to the user domain
▶ only an intermediate representation

(e.g. within compilers)
▶ output language of another generator
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Abstract Description (Bisimulation)
Given:

▶ Source programs PS, target programs PT
▶ Functor F : Programs → Processes

▶ F(P) = (InputP → OutputP)

▶ Execution coalgebras runS, runT and runST
▶ Relation R ⊆ PS × PT denoting semantic equivalence

..PS. R. PT.

F PS

.

F R

.

F PT

. πS. πT.

runST

.

runS

.

runT

.

F (πS)

.

F (πT)

Compute R, such that the above diagram commutes
(πS and πT are projections)
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In Practice

..PS. R. PT.

F PS

.

F R

.

F PT

. πS. πT.

r

.

runST

.

runS

.

runT

.

F (πS)

.

F (πT)

▶ runs usually only given as an informal (textual)
description

▶ No way to execute source programs directly
▶ Relation R is seen as a function r : PS → PT
▶ We are interested in a program computing r
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Architecture of a Code Generator

......Parser.Source
Code

. Type- /
Modelchecker

.

Transformation
Engine

.

.

Rule
Repository

.

Optimizer

.

Unparser

.

Target
Code

.. AST.

AST

.

AST Info

.

Rules

.

Target AST

.

Optimized Target AST

..

r
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Applicative Terms as an Input Language

Applicative terms are a very convenient input language:
▶ Simple grammar

▶ Λ → V | (Λ) Λ
▶ Λ → λ V .Λ

▶ Well understood type systems
▶ Provable termination properties if properly typed

(due to strong normalization [5, 2])
▶ Expressive enough for first order logic

(Curry-Howard Isomorphism [5])
▶ Efficient reduction schemes (e.g. via DAGs [4])
▶ Automatic generation via type inhabitation [3]
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Arbitrary Programming Languages as Output

There are very limited requirements on output languages
▶ A template for some form of n-ary function calling is

needed:
▶ ((f)x)y ⇒ $F($X1, $X2)[$F := f, $X1 := x, $X2 := y]

▶ The typesystem of the output language must not be
too restrictive

▶ e.g. there is no translation from λ∩ to λ →
(since ⊢∩ λ x .(x)x : (σ ∩ (σ → τ)) → τ)

▶ For abstractions new functions have to be declared
▶ Some way to return higher order functions is required

(e.g. via function pointers)

8 / 27



Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Dependency Injection
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Every Day Code (Java)

1 public class MissileLaunchpad {
2 public void fireMissile() {
3 Missile m = new NuclearMissile();
4 m.launch();
5 }
6 }

Problems:
▶ Interface Missile used, but advantages of subtype

polymorphism ignored
▶ Always fires nuclear missiles
▶ Mixture of concerns: launch pads should not produce

missiles
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Version using Dependency Injection

1 public class MissileLaunchpad {
2 private final Missile m;
3
4 MissileLaunchpad(Missile m) {
5 this.m = m;
6 }
7
8 public void fireMissile() {
9 m.launch();

10 }
11 }

▶ Now the user can decide, which missile type is fired
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Possible Variations (Setter Dependency Injection)

1 public class MissileLaunchpad {
2 private Missile m;
3
4 public setMissile(Missile m) {
5 this.m = m;
6 }
7
8 public void fireMissile() {
9 m.launch();

10 }
11 }

▶ Adheres to standard for Managed Java Beans
(JSR-316), which requires a 0-argument constructor

▶ Problematic if setup code fails to call setter before
usage

▶ Undefined behavior if same missile is fired twice
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Possible Variations (Factory Dependency
Injection)

1 public class MissileLaunchpad {
2 private final MissileFactory missileFactory;
3
4 MissileLaunchpad(MissileFactory f) {
5 this.missileFactory = f;
6 }
7
8 public void fireMissile() {
9 Missile m = missileFactory.createMissile();

10 m.launch();
11 }
12 }

Even better approach:
▶ fireMissile can be called more than once
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Advantages (Composition & Reuse)

new MissileLaunchpad(new ISSModuleCarrierRocket())

Components written in Dependency Injection style
▶ rely on composition by design
▶ can be reused differently in different contexts
▶ only ask for dependencies they really need

▶ less global state
▶ no more traditional use of singletons

13 / 27
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Advantages (Testing)

Source: http://testweb.science.uu.nl/AMS/Radiocarbon.htm

Mock objects can be passed into constructors for testing
▶ Testing the MissileLaunchpad class can be done without

havoc
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Frameworks

Dependency Injection frameworks help to wire things up:
▶ provide standardized ways to create factory code
▶ automatically search for ways to fulfill dependencies
▶ manage repositories of accessible objects
▶ control life cycles (singleton, request scope,…)

Frameworks exist for many language environments
(Java, .NET, C++, Python ...)

▶ even standardized to some extend (e.g. JSR-330)
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λ-Terms to Injection Code
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Structural connection (1)

Given any class:
1 class X {
2 public X(Y y, Z z) { ... }
3 }

▶ We create a constructor term
X : (Y, Z) → X

▶ Which we can curry:

X:(Y,Z)→X⊢X:(Y,Z)→X
y:Y⊢y:Y z:Z⊢z:Z

y : Y, z : Z ⊢ (y, z) : (Y, Z)
(∧I)

X : (Y, Z) → X, y : Y, z : Z ⊢ X(y, z) : X
(→E)

X : (Y, Z) → X ⊢ λyz.X(y, z) : Y → Z → X
(2×→I)
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Structural connection (2)

We may reason about an applicative term M and later
replace a free variable with our curried constructor:

▶ By the free variables lemma:
x : Y → Z → X ⊢ M : σ

x : Y → Z → X, X : (Y, Z) → X ⊢ M : σ
▶ Substitution lemma:

X:(Y,Z)→X⊢λyz.X(y,z):Y→Z→X x : Y → Z → X, X : (Y, Z) → X ⊢ M : σ

X : (Y, Z) → X ⊢ M[x := λyz.X(y, z)] : σ
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Structural connection (3)

Now we can reason with our constructor placeholders as
variables and application as the only rule:

Γ, x : σ ⊢ x : σ

Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ (M)N : τ

Thus using the Curry-Howard-Isomorphism:
▶ Dependency Injection style object creation ∼=

Hilbert-Style proofs using constructor types as axiom
schemes :-)!
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A note on types
For inheritance and interfaces we add:

▶ if X instanceof Y then X ≤ Y
▶ if X implements Y, Z then X ≤ Y ∩ Z
▶ if X instanceof XParent, Y instanceof YParent then

XParent → Y ≤ X → YParent
Further we allow typesafe (up)casting by adding:

▶
Γ ⊢ M : σ ∩ τ

Γ ⊢ M : σ

Γ ⊢ M : σ ∩ τ

Γ ⊢ M : τ
(∩E)

▶
Γ ⊢ M : σ Γ ⊢ M : τ

Γ ⊢ M : σ ∩ τ
(∩I)

▶
Γ ⊢ M : σ σ ≤ τ

Γ ⊢ M : τ
(≤)

Now we have an applicative fragment of λ∩ [2]
▶ Our bisimilarity relation R relates object construction

with equally typed λ-terms :-)!

19 / 27



Code Generation
from Applicative

Terms

Jan Bessai

Code Generation
Goal
Architecture
Applicative Terms

Dependency
Injection
Introduction
Advantages
Frameworks

λ-Terms to
Injection Code
Similarity
Implementation

Demo

Conclusion and
discussion
Summary
Outlook
Feedback

References

Implementation

Things to consider during implementation:
▶ Target language

▶ Automatic rule repository generation by constructor
introspection

▶ Use of a dependency injection framework
▶ Generated code should control a framework to create

objects
▶ Framework should support identifiers for multiple values

of the same type
▶ I have chosen Java and the Spring framework to create

a tool called Syringe
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Syringe (Overview)

......NF
β-Reduction

.λ-Term
AST

. Constructor
Introspection

. Java
Classes

.

Interpreter

.

.

Rule Repository

.

JDOM

.

Spring
XML

Fragment

..

Applicative AST

..

Higher order Rules

.

Rules

.

XML AST

..

Syringe
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Software Architecture (Term model)
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Software Architecture (Interpreter)
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Demo
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What we have seen today

▶ Goals and common structure of code generators
▶ Bisimulation

▶ Properties of applicative terms as input languages
▶ Dependency injection in relation to applicative terms

▶ Hilbert style object construction
▶ Bisimilarity relation on types

▶ Implementation of a code generator
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Things I’d like to to

▶ Add a typechecker to Syringe
▶ Add support for setter injection
▶ Implement better reduction strategies
▶ Real proof of bisimilarty properties of R
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Feedback or Questions?

▶ Thank you :-) !
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