
Compiler-Assisted Automatic Error Detection

Jan Bessai

Technische Universität Dortmund, Embedded System Software Group,
Otto-Hahn-Str. 16, 44227 Dortmund, Germany

jan.bessai@tu-dortmund.de

http://ess.cs.tu-dortmund.de/Teaching/WS2012/SFt/index.html

Abstract. This work gives an overview of compiler-assisted methods
to ensure fault-tolerance without hardware support and major modifica-
tions to source programs. The overview of existing methods is accompa-
nied by a practical implementation of AN-Encoding using AspectC++[3],
and a theoretical proposal for adding redundancy to functional pro-
grams by employing multiple beta reduction strategies. Experimental
results from [15, 17] are compared and limitations of compiler-assisted
approaches are discussed.

1 Introduction

The increasing ubiquity of computing puts greater and greater importance on
reliability of more and more complex systems. In order to ensure that these sys-
tems continue to work correctly either better hardware is required or software has
to become smarter. Compiler-assisted error detection is a way to automatically
enhance software without actually changing its implementation and therefore a
very promising area of research. In literature three standard methods are es-
tablished to have compilers add fault detection mechanisms to programs. These
are the MASK approach which is explained in section 2.1, AN-Encoding pre-
sented together with a possible implementation as well as variations in section
2.2 and SWIFT outlined in section 2.3. A new approach for functional languages,
which has not yet been implemented, is discussed in section 2.4. The next part
of this work consists of a short evaluation of existing methods by comparing
results obtained in literature (section 3.1) and drawing up general limitations of
compiler-assisted error detection (section 3.2). Finally results are summarized
and an outlook on future research topics is given.

2 Methods

2.1 MASK

The MASK approach as described in [15] is based on containment of errors,
rather than redundancy. Utilizing static analysis compilers can detect which
parts of a register are expected to be involved in a computation. This kind of
analysis can be performed using the technique shown in [12] where constant



propagation is analyzed bitwise instead of wordwise. All parts of used registers
which can be proven to be constant during an operation can be masked out and
restored to their previous value if they erroneously change.

1 mov ecx , 0

2 and ecx, 0xFFFE

3 again:

4 push ecx

5 call innerLoopFun

6 add ecx , 2

7 and ecx, 0xFFFE

8 cmp ecx , 10

9 jl again

Listing 1.1. MASK protected loop counter

Listing 1.1 shows the application of MASK to a loop counter placed in the ecx

register of a x86 machine. The lowest bit of ecx was detected to be constant and
is masked out (line 2, 7). Thus the function innerLoopFun cannot be called with
an uneven value as parameter, even if the last bit of the loop counter flips during
addition (line 7). Intelligent compile time analysis with intimate knowledge of
the underlying machine model is required as a key factor for MASK to success-
fully detect and correct errors. This kind of knowledge is hard to maintain on
architectures with a diverse instruction set which is constantly under evolution
as is the case for x86. Further the compiler has to ensure that commands with in-
direct register usage do not induce side effects before potential errors are masked
out. Such side effects are common in embedded systems where memory mapped
registers are often directly tied to output pins of the processor controlling exter-
nal hardware. If its implementation is feasible, the MASK approach is able to
ensure all kinds of invariants, as more complex masking patterns are thinkable.
These could range from arithmetic properties as shown before and mentioned
in [15] to patterns for valid callable function addresses. Masks on the latter are
sometimes even supported in hardware. This is most prominently known from
the NX-Bit of the AMD64 architecture [2].

2.2 AN-Encoding

AN-Encoding was invented to protect computers in space travel from harmful
effects of background radiation and first employed in the STAR project [1]. It
is based on redundancy as it spreads the hamming distance [9, 11] of valid code
words. Arithmetic AN-codes are based on multiplication with a large constant
commonly denoted as A. Therefore only codewords divisible by A are valid. This
property is invariant during addition and multiplication:

A · x+A · y mod A = A · (x+ y) mod A = 0 (1)

(A · x) · y mod A = A · (x · y) mod A = 0 (2)



The ratio of all words over valid codewords is reduced from 1 in a non-encoded
version to 1

A in an encoded version. Thus the error probability for exchanging
codewords accidentally is inverse proportional to A. Authors disagree on the
choice of A. Both [5] and [15] recommend a value of 2n − 1 backed by the
observation that any single flipped bit adds or subtracts 2k which is off by
|(2n − 1) − 2k| > 0 Bits to the next valid codeword. Further efficiency might
be improved if multiplication can be implemented by shifting and subtraction
(x · (2n − 1) = (x << n) − x). Exceeding this requirement [9] suggests that A
should be prime in order to reduce the probability of multiple bit errors adding
up as factors of A. Both requirements can be combined using a Mersenne prime
[7], for example 27 − 1 = 127. As discussed in 3.1 only single bit error scenarios
were experimentally studied and hence the choice should not affect the obtained
results.

In contrast to MASK, which requires static analysis capabilities only avail-
able within the implementation of a compiler, the aspect of protecting programs
by AN-Encoding can be implemented separately. In [9] the compiler back-end
of LLVM [13] was adjusted to include appropriate templates. This approach
ensures, that all generated code is protected. The source language can also be
exchanged since LLVM completely decouples its front- and back-end. Neverthe-
less the implementation is closely tied to LLVM and its own bytecode assembly
language resulting in increased complexity and disadvantageous properties for
illustrating how AN-Encoding works. Therefore the following presentation em-
ploys a source-to-source transformation, that helps to grasp AN-Encoding at a
more abstract level. This comes at the price of not being able to protect compiler
generated instructions invisible at the source code level (e.g. pointer arithmetic
for address calculations). These instructions are vital to the correct execution
of a program, but abnormalities are likely to cause noticeable effects or even
crashes, rather than just incorrect computation results. Whether this is accept-
able depends on the application context.

For the implementation presented next, C++ was chosen as the source lan-
guage. No modification to a compiler was needed to add the source-transformation,
because AspectC++ [3] provides all the necessary means to weave in the aspect
of AN-Encoding. The implementation relies on the lightweight container class
Protected<T> (listing 1.2), which encapsulates values of its template parameter
type T to be protected by some form of encoding. It is designed to aid pro-
grammers state their intent of protecting a certain value without the need of
specifying how the protection is performed. Further it serves as a provider for
the necessary join points to weave in advices how to handle encoded computa-
tions. All arithmetic operators exist as methods and their assignment versions
(e.g. operator+=, line 39) dispatch to those methods. If no aspect is present to
interfere, Protected<T> will just store a value of type T (resolved via the generic
case of the template definition of Encoded<T>, line 4) and mirror the operations
defined on T. It is almost completely transparent to the programmer using it.
The only exceptions are the constructor call, exposed via the function protect

(line 10), and the cast operation to extract the decoded value. Encapsulating



the constructor is necessary for the mere technical reason, that AspectC++ at
the state of writing has no support for construction advices on template classes.

1 template <class T>

2 class Encoded {

3 public:

4 typedef T EncodedType;

5 };

6

7 template <class T> class Protected;

8

9 template <class T>

10 Protected <T> protect(const T &value) {

11 return Protected <T>( value);

12 }

13

14 template <class T>

15 class Protected {

16 friend Protected <T> protect <T>( const T&);

17 Protected(const typename Encoded <T>:: EncodedType

&value) : value(value) {}

18 public:

19 typedef typename Encoded <T>:: EncodedType EncodedType;

20 EncodedType value;

21 Protected(const Protected <T> &other) :

value(other.value) {}

22

23 operator T() {

24 return (T)value;

25 }

26

27 Protected <T> operator +( const Protected <T> &y) const {

28 Protected <T> result (*this);

29 result.value += y.value;

30 return result;

31 }

32

33 Protected <T> operator *( const Protected <T> &y) const {

34 Protected <T> result (*this);

35 result.value *= y.value;

36 return result;

37 }

38 ...

39 Protected <T> &operator +=( const Protected <T> &other) {

40 Protected <T> result = (*this) + other;

41 value = result.value;



42 return *this;

43 }

44 ...

45 };

Listing 1.2. Container for encoding protected values

In order to prevent overflows, encoded types need to be four times larger than
their unencoded counterparts, since their size has to double for multiplication
with A (if A is of the same type) and double again if two encoded values are
multiplied. The mapping of types is handled by the class Encoded<T> from the
previous listing. An aspect header can add partial instantiations of this tem-
plated class for each type considered as shown in listing 1.3.

1 #include <gmpxx.h>

2

3 template <>

4 class Encoded <char > {

5 typedef int EncodedType;

6 };

7

8 template <>

9 class Encoded <int > {

10 typedef mpz_class EncodedType;

11 };

12

13 ...

Listing 1.3. Aspect header, mapping types to their encoded counterparts

For example the encoded type of a 8-Bit char is a 32-Bit int (line 5). The encoded
type for a 32-Bit int is an arbitrary precision value (line 10) encoded using
mpz_class from the GNU Multiple Precision Arithmetic Library [4], because
types four times the size of an int are not available in standard C++.

The basic encoding and decoding is realized in the aspect shown in listing 1.4.
Here advices on the pointcuts matching calls of protect and the cast-operator
from Protected<T> to T multiply with (line 7) and divide by (line 14) the
encoding constant A. The decode advice on the cast operator especially avoids
problems with calls to foreign libraries which do not accept AN-Encoded values.
The compiler will automatically generate calls to cast from Protected<T> to T

when passing protected values to those libraries. Hence in contrast to the method
from [9] no further care is required.

1 aspect ANEncode {

2 static const int A = 127;

3

4 pointcut encode () =

5 call("% protect <... >(...)");

6 advice encode () : after() {



7 tjp ->result ()->value *= A;

8 }

9

10 pointcut decode () =

11 call("% Protected <... >:: operator %()")

12 && !negation ()

13 advice decode () : after() {

14 *(tjp ->result ()) /= A;

15 }

16

17 ...

18 };

Listing 1.4. Aspect to implement AN-Encoding

Next a variety of different pointcuts is added to match calls to every operator
(listing 1.5). Further the advice on the pointcut checkable(), defined as the
disjunction of all operator pointcuts, ensures the static invariant, that encoded
values are divisable by A (line 32). If constraint violations are found the user is
currently informed by a simple text message. More sophisticated error report-
ing and recovery methods could easily be added (e.g. by inheriting from the
ANEncode aspect).

1 pointcut addition () =

2 call("% Protected <... >:: operator +(...)");

3 pointcut subtraction () =

4 call("% Protected <... >:: operator -(...)");

5 pointcut multiplication () =

6 call("% Protected <... >:: operator *(...)");

7 pointcut division () =

8 call ("% Protected <... >:: operator /(...)");

9 pointcut negation () =

10 call ("% Protected <... >:: operator !(...)");

11 pointcut conjunction () =

12 call("% Protected <... >:: operator &&(...)")

13 && args("const Protected <...> &");

14 pointcut disjunction () =

15 call("% Protected <... >:: operator ||(...)")

16 && args("const Protected <...> &");

17 pointcut exclusiveDisjunction () =

18 call("% Protected <... >:: operator ^(...)")

19 && args("const Protected <...> &");

20

21 pointcut checkable () =

22 addition ()

23 || subtraction ()

24 || multiplication ()



25 || division ()

26 || negation ()

27 || conjunction ()

28 || disjunction ()

29 || exclusiveDisjunction ();

30

31 advice checkable () : after() {

32 if (tjp ->result ()->value % A != 0) {

33 std::cout << "Error detected!" << std::endl;

34 std::cout << tjp ->result ()->value << std::endl;

35 }

36 }

Listing 1.5. Pointcuts matching operators

For multiplication and division additional advice is required to cancel out and
supply additional factors of A (listing 1.6).

1 advice multiplication () : after() {

2 tjp ->result ()->value /= A;

3 }

4

5 advice division () : before () {

6 tjp ->target ()->value *= A;

7 }

Listing 1.6. Additional advice for multiplication and division

Logical operations are harder to encode and have to be replaced by arithmetic
versions as described in [9]. This replacement is realized in the advices from
listing 1.7. Here casts to bool correspond to clipping of values to 0 or 1, where
1 is chosen whenever a value is different from 0.

1 advice negation () : after() {

2 tjp ->result ()->value = A - A *

((bool)tjp ->target ()->value);

3 }

4

5 advice conjunction () : after() {

6 tjp ->result ()->value =

7 ((A * ((bool)tjp ->target ()->value)) *

8 (A * ((bool)tjp ->arg <0>() ->value))) / A;

9 }

10

11 advice disjunction () : after() {

12 tjp ->result ()->value =

13 ((A * ((bool)tjp ->target ()->value)) +

14 (A * ((bool)tjp ->arg <0>() ->value))) -

15 ((A * ((bool)tjp ->target ()->value)) *



16 (A * ((bool)tjp ->arg <0>() ->value)));

17 }

18

19 advice exclusiveDisjunction () : after() {

20 tjp ->result ()->value =

21 ((A * ((bool)tjp ->target ()->value)) +

22 (A * ((bool)tjp ->arg <0>() ->value))) % 2;

23 }

Listing 1.7. Replacement of logic operations

If Bitwise logical operations were implemented via shift and the previous im-
plementation, they would create excessive overhead due to the involvement of
loops executing several additions and multiplications per bit. The LLVM based
implementation in [9] suggests a lookup table based solution to avoid this. Such
lookup tables could either be created by an external codegenerator, or template
metaprogramming can be used to create them during compile time. The latter
has the advantage that no additional program is required. The basic building
blocks for this are shown in listing 1.8 and based on the technique presented in
[10].

1 template <class T, T ... args >

2 struct TemplateLut {

3 static const T table[sizeof ... (args)];

4 };

5

6 template <class T, T ... args >

7 const T TemplateLut <T, args ...>:: table[sizeof ...

(args)] = { args ... };

8

9 template <unsigned int N, class T, template <unsigned

int , class > class F, T ... args >

10 struct TemplateLutBuilder {

11 typedef typename TemplateLutBuilder <N-1, T, F, F<N,

T>::value , args ... >:: result result;

12 };

13

14 template <class T, template <unsigned int , class > class

F, T ... args >

15 struct TemplateLutBuilder <0, T, F, args...> {

16 typedef TemplateLut <T, args...> result;

17 };

18

19 template <unsigned int N, class T, template <unsigned

int , class > class F>

20 struct GenerateLut {

21 typedef typename TemplateLutBuilder <N, T, F>:: result

result;



22 };

Listing 1.8. Lookuptables with template metaprogramming

First the struct TemplateLut is defined (line 1-4). This struct receives the lookup
table type T and all table contents as template parameters. To be able to hold
arbitrarily many parameters a variadic template argument list is required, which
is a feature recently added to C++ [8]. TemplateLut includes the final lookup ta-
ble as the static member variable table and initializes it with the contents of the
variadic template argument list args (line 7). The struct TemplateLutBuilder
emulates recursive calls to its function like template argument F and advances
the variadic argument list of the next call by the function result obtained with
F<N, T>::value (line 11). The template parameter N is designated as a counter,
which is passed as argument to F and decreased in every recursive call. The spe-
cialization for N = 0 in lines 14-17 deals with the recursive base case and passes
all function results form its parameter list to TemplateLut in order to store them.
GenerateLut wraps up the recursive logic in an easy to use interface (lines 19-
22) where the type result will be a specialization of TemplateLut that includes
a table of N results of calls to F.

At the time of writing AspectC++ does not yet support the new C++ stan-
dard and variadic templates. To work around this separate compilation units
can be created, where one unit creates the lookup tables and the other unit
references them as pointers to global variables. All required instances have to
be known in both compilation units. A preprocessor macro technique described
in [6] can be used to create the instantiation code at compile time. Listing 1.9
shows the header file to be shared between both compilation units.

1 #ifndef __LUT_H__

2 #define __LUT_H__

3

4 #define LUTS() \

5 MK_LUT(int , ANNot , 512)

6

7 #ifndef __LUT_IMPL__

8 #define MK_LUT(T, F, N) \

9 extern const T (*F## Table_ ##T) [N]

10 LUTS();

11 #undef MK_LUT

12 #endif

13

14 #endif

Listing 1.9. Shared header for compilation units with and without C++11 features

For compilation units not defining __LUT_IML__ prior to including the shared
header calls to the MK_LUT(T, F, N) macro function will create pointers to
global lookup tables of type T holding N elements and name these pointers with
the concatenation of the contents of F, the text Table and the typename T as
suffix. For example the definition of LUTS in line 5 will create the sourcecode



extern const int (*ANNotTable_int)[512]. The compilation unit which in-
cludes the code from listing 1.8 has to define __LUT_IMPL__ prior to inclusion of
the shared header and the code from listing 1.10 after GenerateLut was defined.

1 template <unsigned int A>

2 struct ANNot {

3 template <unsigned int N, class T>

4 struct LutFun {

5 enum { value = /* ... */ };

6 };

7 };

8

9 const unsigned int A = 127;

10

11 #define MK_LUT(T, F, N) \

12 const T (*F## Table_ ##T)[N] = &GenerateLut <N, T,

F<A>:: LutFun >:: result :: table

13 LUTS();

14 #undef MK_LUT

Listing 1.10. Generator function and macro definition for the C++11 enabled
compilation unit

In lines 11-14 of listing 1.10 the macro function MK_LUT(T, F, N) is defined
again. This time it will instantiate the GenerateLut template with its argu-
ments and bind a global variable named as before to the memory location of
the created lookup table. The struct ANNot provides the function like template
struct LutFun to create the aforementioned table ANNotTable_int. It receives
an additional parameter A which is designated to be used in LutFun for the
AN-Encoding of tabulated bitwise logical negation. The concrete definition of
this function is omitted. While tests have shown that the presented mechanism
can correctly compute tables for any defined function, at the time of writing
no useful definition for a function to create tables for bitwise logical negation is
known to the author. In [9], where the proposal to precompute results was made,
only a vague description how this can be done is given. All trials to reproduce
it programmatically or by hand failed. Nonetheless the missing piece should be
easy to insert once it is found, and all important functionality to implement a
source to source transformation aspect was presented.

AN-Encoding in its presented form is agnostic to which parameters are passed
in, as long as they are encoded as multiples of A. This leaves a window of
vulnerability for errors causing exchanged operands. In [16, 17] two extensions
are proposed. The first, called ANB-Encoding, adds designated constants for



every parameter to the operation result value. The basic operations then become

A · x+A · y +Bx +By mod A =

A · (x+ y) +Bx +By mod A = Bx +By (3)

(A · x) · y +Bx +By mod A =

A · (x · y) +Bx +By mod A = Bx +By (4)

where Bx and By have to be chosen differently for each operational parameter. A
wrong parameter, e.g. Bz, can then be detected by an offset to the expected mod-
ulo result. The second proposed extension, ANBD-Encoding, deals with control
flow errors. A new offset D is added to each operation:

A · x+A · y +Bx +By +D mod A =

A · (x+ y) +Bx +By +D mod A = Bx +By +D (5)

(A · x) · y +Bx +By +D mod A =

A · (x · y) +Bx +By +D mod A = Bx +By +D (6)

If an operation is executed out of order, the current value for D - kept and
updated in a register - will again cause a detectable difference to the expected
modulo result. Of course this kind of protection is limited in its capability find
errors where exchanged operands and out of order execution accidentally add
up to satisfy the required invariant.

2.3 SWIFT

Perhaps the most intuitive way to detect and recover errors is to run instructions
more than once and compare the outcomes. This approach is called SWIFT
and is studied in [15]. Listing 1.11 shows x86-Assembly code, in which an add

instruction (lines 2 and 5) is executed twice and its results are compared calling
an error handler on mismatch.

1 push eax

2 add eax , ebx

3 push eax

4 mov eax , [esp + 4]

5 add eax , ebx

6 push ebx

7 mov ebx , [esp + 4]

8 cmp eax , ebx

9 jeq ok

10 call errorHandler

11 ok: ...

Listing 1.11. SWIFT protected add

If the instruction is executed three or more times majority voting can be em-
ployed to decide which result was correct [15]. As it can be easily seen in listing



1.11 not only the extra cost of repetitive instructions will arise, but especially
on register starved architectures like x86 additional commands will be needed
to save intermediate results on the stack. In theory these commands of course
can fail again and might need protection. Therefore the use of SWIFT, also it is
simple to implement, has to be carefully justified [17]. Another obstacle, similar
to MASK, is to ensure the absence of repeated side effects [17]. Thus again inti-
mate knowledge of the underlying instruction semantic is needed. In contrast to
AN-Encoding protection from permanent failures or burst failures is impossible
with SWIFT [17]. If repeated instructions all calculate the same wrong result,
no error will be detected.

2.4 Multi Strategy Beta Reduction

The last section described the SWIFT approach on a very low level for imperative
machine instructions. If the underlying target language is not imperative, but
functional, compilers can employ a similar scheme. In the lambda calculus, which
is the fundamental base of all functional languages, program evaluation is done
by beta reduction, usually defined as

(λx.P )Q →β P [x/Q]

x →β x

P →β P
′ ⇒ λx.P →β λx.P

′

P →β P
′ ⇒ P Q →β P

′Q

Q→β Q
′ ⇒ P Q →β P Q

′

where P [x/Q] denotes the substitution of x by Q in P as defined in [18]. The last
two rules for beta reduction show, that the application of the term P to Q, where
P →β P

′ and Q→β Q
′ can be reduced to either P ′Q or P Q′. By the Church-

Rosser-Property [18] for two different reductions with the same starting point
there always exists a finite reduction to a common form. The next example shows
how the same lambda term is reduced using two different reduction strategies
(→β,1 and →β,2).

(λx.x((λy.y3)x)))f

→β,1(λx.x(x3))f

→β,1f(f3)

(λx.x((λy.y3)x)))f

→β,2f((λy.y3)f))

→β,2f(f3)

Theoretically a compiler could make use of this to create redundant different
control flows which can be evaluated to a point where they converge to a com-
mon result. Many type systems like the simple typed lambda calculus λ→ even
provide strong normalization properties, such that any reduction can be chosen



and a normal form can be found [18]. This variation of SWIFT would be well
suited to deal with burst failures as these are unlikely to occur in two different
control flows. Further pure functional programs are free of side effects by defini-
tion, so no harm is done by executing the same function twice. Nevertheless the
runtime system employed in real world functional compilers [14] would need to
be protected from failures itself, for which only other methods are suited.

3 Evaluation

3.1 Experiments

Testing the efficiency of measures for fault tolerance is a difficult task. The main
aspects which have to be taken into consideration are the fault model used to
inject errors, the programs under test and whether and how performance is
measured. The situation is worsened by the fact, that errors occur randomly
with random effects, and a large quantity of experiments has to be conducted
in order to generalize results. All these reasons made it impossible to run own
experiments within the scope of this work. They also reflect heavily on the
generality of previous results. Currently the most complete studies on the topic
are [15] and [17]. Other papers usually provide only summarized results of single
methods. In [15] only one error per program could appear and only single bit
errors were examined. In [17] faulty operands, faulty operators, lost operations,
permanent failures and burst errors were studied as well. Programs under test
were in both cases a range of different standard programs, where the test suite
in [15] was much more diverse. The tested fault prevention mechanisms were
in both studies a range of variations and combinations of those explained here.
In [15] special attention was payed to the combination of different approaches,
whereas in [17] the main goal was to compare different versions of AN-Encoding
to SWIFT. Performance was commonly measured in terms of undetected errors
(Silent Data Corruption, SDC). Nevertheless [15] looked at errors which do not
affect the application result and errors leading to crashes as well. Further in
[17] throughput in a client-server scenario was observed while in [15] runtimes
were compared to unprotected versions. Both studies employed large quantities
of runs, where in [15] 250 runs were executed per benchmark while in [17] several
thousand runs were executed per injected error type.

The differences between both studies are too great to rank approaches. A
common result also shared in [9] and [16] is, that by the use of appropriate
compiler based error detection methods undetected error rates can be brought
down by about 80-95%, while the runtime performance of programs is degraded
by a factor of roughly 2-3.

3.2 Limitations

Several specific limitations of compiler based approaches were already discussed
during the presentations in the previous sections. In addition to these it is impor-
tant to mention a few general limitations that apply to all compiler based error



detection mechanisms. One major limitation of all software based ways to ensure
fault tolerance is, that always additional instructions are required. Those instruc-
tions can fail and cause errors instead of preventing them. They are especially
error prone if the memory in which they are stored is faulty. The unreliability
introduced by overhead can be further worsened if protection mechanisms lack
granularity and protect uncritical sections of programs. The aspect oriented im-
plementation of AN-Encoding presented in section 2.2 is one step towards better
granularity as it allows the programmer to specify which computations are to be
protected. Another very general limitation is that compilers usually are unaware
of the semantic of the source language of a program and can only decide based
on very coarse heuristics which protection mechanism is best. The approaches in
all research papers known to the author don’t even try to capture the semantic
of the source program at all. Instead they focus on low level target languages,
which are very sensitive to subtle details of specific implementations. Further,
even though it is possible, no approach explicitly dealt with failover cleanup and
provided programmer controlled interfaces for error scenarios. This is mainly
due to the lack of production grade standardized implementations.

4 Summary and Outlook

Four methods for compiler-assisted error detection were presented. The MASK
approach discussed in section 2.1 is based on error containment and relies heav-
ily on the static analysis capabilities of compilers. It has a very small instruction
footprint but can be hard to implement. AN-Encoding presented in section 2.2
employs value level redundancy. Its principles are easy to understand and it is ca-
pable of protecting a broad variety of operations against different kinds of errors.
A very lightweight implementation was sketched out, which uses AspectC++ to
weave AN-Encoding into the sourcecode of a program. The advantages and lim-
itations of this style of implementation were discussed and compared to the
compiler back-end implementation presented in [9]. The SWIFT approach adds
redundancy at an operational level and was outlined in section 2.3. Even though
it is very intuitive there are pitfalls like side effects, which are to be considered
before it is applied. The multi strategy beta reduction approach (section 2.4) is
a new proposal from this work and similar to SWIFT, but for functional lan-
guages. In theory it is capable of adding different redundant execution paths
with equal results to a program. A comparison of experimental results (section
3.1) published in literature highlighted the many possibilities arising when test-
ing the effectiveness of the presented methods. While this made it impossible to
fairly rank mechanisms, it revealed that their correct use can drastically lower
the probability of undetected errors. The final discussion of general limitations
to compiler-assisted error detection showed that a lot of work has yet to be done.
Interesting further research topics are the incorporation of source language se-
mantic into error detection mechanisms, the standardization and maturation of
compilers employing any of the presented methods and to find out in how far
the multi strategy beta reduction approach is feasible to implement.



Bibliography

[1] Computers in Spaceflight: The NASA Experience (1987), http://history.
nasa.gov/computers/contents.html

[2] AMD64 Architecture Programmer’s Manual (2012), http://support.amd.
com/us/Embedded_TechDocs/24593.pdf

[3] Homepage of the AspectC++ language (2013), http://www.aspectc.org/
[4] The GNU Multiple Precision Arithmetic Library (2013), http://www.

gmplib.org

[5] Avizienis, A.: Arithmetic Error Codes: Cost and Effectiveness Studies for
Application in Digital System Design. IEEE Transactions on Computers
C-20(11), 322 – 1331 (Nov 1971)

[6] Bright, W.: The X Macro. Dr. Dobb’s Bloggers (2010), http://www.

drdobbs.com/cpp/the-x-macro/228700289#

[7] Caldwell, C.K.: Mersenne Primes: History, Theorems and Lists (2013),
http://primes.utm.edu/mersenne/

[8] Du Toit, S., et al.: Working Draft, Standard for Programming Lan-
guage C++. Tech. rep., ISO/IEC (2012), http://isocpp.org/std/

the-standard

[9] Fetzer, C., Schiffel, U., Skraut, M.: An-encoding compiler: Building safety-
critical systems with commodity hardware. In: Computer Safety, Relia-
bility, and Security, Lecture Notes in Computer Science, vol. 5775, pp.
283–296. Springer Berlin Heidelberg (2009), http://dx.doi.org/10.1007/
978-3-642-04468-7_23

[10] Fritzsche, G.: Programmatically create static arrays at compile time in C++
(2013), http://stackoverflow.com/a/2981617

[11] Haming, R.W.: Error Detecting and Error Correcting Codes. The Bell
System Technical Journal 26, 147–160 (1950)

[12] Kildall, G.A.: A unified approach to global program optimization. In: Pro-
ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Princi-
ples of programming languages. pp. 194–206. POPL ’73, ACM, New York,
NY, USA (1973), http://doi.acm.org/10.1145/512927.512945

[13] Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In: Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04). Palo Alto,
California (Mar 2004)

[14] Marlow, S., Peyton Jones, S.L.: Making a fast curry: push/enter vs. eval/ap-
ply for higher-order languages. Journal of Functional Programming 16(4-5),
415–449 (2006)

[15] Reis, G.A., Chang, J., August, D.I.: Automatic Instruction-level
Software-Only Recovery. IEEE Micro 27, 36–47 (2007), http://doi.

ieeecomputersociety.org/10.1109/MM.2007.4

[16] Schiffel, U., Schmitt, A., Süßkraut, M., Fetzer, C.: ANB- and ANBDmem-
Encoding: Detecting Hardware Errors in Software. In: Schoitsch, E. (ed.)



Computer Safety, Reliability, and Security. Lecture Notes in Computer Sci-
ence, vol. 6351, pp. 169–182. Springer Berlin / Heidelberg (2010)

[17] Schiffel, U., Schmitt, A., Süßkraut, M., Fetzer, C.: Software-Implemented
Hardware Error Detection: Costs and Gains. In: The Third International
Conference on Dependability (DEPEND 2010). pp. 51–57. IEEE Computer
Society, Los Alamitos, CA, USA (2010)

[18] Sørensen, M.H.B., Urzyczyn, P.: Lectures on the Curry-Howard Iso-
morphism (1998), http://ls14-www.cs.tu-dortmund.de/images/d/db/

Curry-howard.pdf


