
Code Generation from Applicative Terms

Jan Bessai

Technische Universität Dortmund, Chair of Software Engineering,
Otto-Hahn-Str. 14, 44227 Dortmund, Germany

jan.bessai@tu-dortmund.de

http://ls14-www.cs.tu-dortmund.de/index.php/Seminar-AI-Planning-12-13

Abstract. This work analyzes how to generate code from applicative
terms, especially in the context of Dependency Injection. Relevant basic
concepts are introduced and a threefold correspondence between Depen-
dency Injection style object creation, applicative terms and Hilbert-style
proofs is explored. The implementation of Syringe, a tool which can
translate λ-expressions to XML fragments for the Spring Framework, is
presented together with a demo application to compose GUI components.

1 Introduction

Today abstraction is the most essential way to tame the ever increasing complex-
ity of software systems. Automated translation between the different domains
connected with different abstraction layers has become standard. Part of this
standard is code generation, which will be studied for the special case of applica-
tive input terms throughout the following text. Section 2 describes the goals and
architecture of code generators and the special properties of the chosen source
language. An architectural design pattern known as Dependency Injection is in-
troduced in section 3 in order to analyze its structural connection to applicative
terms in section 4. This connection is used to implement a code generator in
section 5. The gain in abstraction is demonstrated by using it to translate one
simple expression into a complete GUI application. Related work is discussed in
section 6. In the last part results are summarized and possible future research
topics outlined.

2 Code Generation and Applicative Terms

Code generation is part of every compilation process and in fact the same as
compilation itself. Therefore its goal is the same: namely to translate different
code representations into another while obeying their semantics. Reasons to
do this can vary. Maybe the source language is simpler and closer to a user
domain (as it is with every high level programming language, which is compiled
to assembler). Maybe the source language was only an internal representation,
e.g. for a compiler. Or the source language might have been the target language
of another code generator, as it is for the final code generation of AI-Planning

processes. The vague concept of obeying semantics can be formalized further.
Such formalization has been studied at great length and can be captured by the
concept of Bisimulation [15]. It consists of several components:

PS: The set of all source programs
PT : The set of all target programs
F : A Functor from pograms to processes F(P) = (InputP → OutputP)
runS, runT , runST : Coalgebras to execute programs and turn them into pro-

cesses
R ⊆ PS × PT : A relation denoting semantic equivalence

PS R PT

F PS F R F PT

πS πT

runSTrunS runT

F (πS) F (πT)

Fig. 1: A Bisimulation of source and target programs

These components form a Bisimulation if diagram 1 commutes, i.e. if

runS ◦ πS = F(πS) ◦ runST

and runT ◦ πT = F(πT) ◦ runST

hold for all elements of R. In words this means, that if source and target pro-
grams are semantically related, their execution has to give rise to processes which
are related in the same way. The requirement for the mapping F to be a Func-
tor is to ensure the upholding of sane mathematical properties (preservation of
identity and composition). This is especially needed, if the process relation is to
be studied further, as usually relations on processes (defined by their inputs and
outputs in certain states) are subject to Bisimulation themselves [15]. Although
the abstract notion of bisimilarity can be very helpful to formally verify certain
aspects of codegeneration, the practical situation often rather looks like depicted
in diagram 2. The lower left part of the diagram is completely grayed out, be-
cause there is usually no way to directly execute source programs. Moreover
their specification is mostly given in an informal way, by natural language only.
The interesting part of the diagram is the upper blue arrow, which symbolizes
the morphism from source to target programs, i.e. the code generator. This mor-
phism is equal to treating the relation R as a function, since there should be just
one target program per source program instead of many.

While it might be worthwhile to study the mathematical properties of such a
function, in computer science it is much more important, to be able to compute

PS R PT

F PS F R F PT

πS πT

r

runSTrunS runT

F (πS) F (πT)

Fig. 2: Practical situation when constructing codegenerators (unknown parts are
grayed out)

Parser
Source

Code
Type- /

Modelchecker

Transformation
Engine

Rule
Repository

Optimizer

Unparser
Target

Code

AST

AST
AST Info

Rules

Target AST

Optimized Target AST

r

Fig. 3: Common architecture of codegenerators, based on [10]

it. The common architectural features of code generators are explained in great
detail in [10]. Figure 3 shows an overview of these features: A parser is used to
translate sequential input programs into an internal structure, usually an ab-
stract syntax tree (AST). This structure is passed on and validated by a type
or sometimes even model checker. Information from the validation process (e.g.
inferred types) and the AST are then translated using rules from some kind of
repository. In many generators this repository is woven into the transformation
engine and does not appear as a separate component. The output of the trans-
formation engine is an internal structure describing the program in terms of the
target language. This structure can be optimized in an additional step and is
finally translated into a sequential form again, which is the textual representa-
tion of the target program. The final translation step is inverse to parsing and
therefore called unparsing. Sometimes a template engine is used to perform the
last three steps in one, by directly replacing variables in a target code fragment
with preprocessed parts of the input AST [10].

One of the input languages can be applicative terms [24]. These are comprised
of a very simple grammar, consisting of only two rules

Λ→ V | (Λ)Λ ,

where V denotes members of a set of variable identifiers. If full the lambda
calculus is to be considered, a third rule has to be added:

Λ→ λV .Λ

Restrictive syntactical properties are advantageous not only in parser construc-
tion, but also for reasoning about programs. Hence the lambda calculus is per-
haps the best studied form of writing down programs with observations going
back to the early 1930s [9]. These observations especially include well understood
type systems. Some type systems, for example simple types (λ→), or intersec-
tion types (λ∩), even allow to assert termination properties due to the fact that
they guarantee strong normalization [24, 13]. They are of special interest to
AI-Planning, since terms can be automatically generated for types by means of
inhabitation [22]. By the Curry-Howard-Isomorphism [24] simply typed lambda
terms are isomorphic to intuitionistic logic. Untyped lambda terms are even
turing-complete [24]. Therefore they are, despite their simple structure, expres-
sive enough to encode complex programs. An important part of being a well
suited input language for code generation are the requirements imposed on out-
put languages. These are exceptionally low for applicative terms. Basically only a
template for the translation of term application to n-ary function calls is needed.
This template can be exemplified for two arguments as follows:

((f)x)y ⇒r $F ($X1, $X2)[$F := f, $X1 := x, $X2 := y]

So within the text $F ($X1, $X2) the variables F , X1 and X2 are substituted by
the free variables f , x and y from the applicative term. Of course the resulting
target program has to define a binding to those variables in which f is a function

taking 2 arguments and x and y have types corresponding to the argument
types. New function definitions are not required, unless code generation is to be
done for the full lambda calculus. If this should be the case nevertheless, the
target language has to provide means for creating closures and passing them
as parameters (usually in form of function pointers stored with arguments on a
stack of continuations [19]). Further the typesystem of the target language has
to be expressive enough to allow all terms of the input language. This is not
always the case as can be best seen for the translation from λ∩ to λ→, which
has to fail because

`∩ λx .(x)x : (σ ∩ (σ → τ))→ τ

and

6` λx .(x)x : γ ,

meaning that λx.(x)x is typeable in λ∩, but not in λ→ [13].

3 Dependency Injection

This section gives a short introduction to Dependency Injection, which serves
as basis for an output language in section 4. Dependency Injection is an ar-
chitectural pattern and as such best explained by example (this was also the
method of choice in one of the earliest articles about it [12]). Listing 1.1 shows

1 public class MissileLaunchpad {

2 public void fireMissile () {

3 Missile m = new NuclearMissile ();

4 m.launch ();

5 }

6 }

Listing 1.1: Every day Java code

an unusual Java class, MissileLaunchpad, that has a method to fire a mis-
sile. Calling this method creates a new NuclearMissile and fires it. Easy as it
may seem, there are a few problems with this implementation: it introduces a
mixture of concerns, since MissileLaunchpad should not be responsible for the
creation of new missiles. While the newly created NuclearMissile is assigned
to an object of the supertype (or interface) Missile, the advantages of poly-
morphism are instantly lost, because no different type of missile can be created
without a change in code. The aforementioned problems are solved in the im-
plementation presented in listing 1.2. The Missile object MissileLaunchpad

depends on is injected during the constructor call, which is the reason to call
this style of programming Dependency Injection. The aspect of Object creation
can now be treated in a completely separate place, making it possible for users

1 public class MissileLaunchpad {

2 private final Missile m;

3

4 MissileLaunchpad(Missile m) {

5 this.m = m;

6 }

7

8 public void fireMissile () {

9 m.launch ();

10 }

11 }

Listing 1.2: Dependency Injection version of listing 1.1

of MissileLaunchpad to fire different types of missiles. There are two popular
variations on the presented pattern. Listing 1.3 shows a setter-based version of

1 public class MissileLaunchpad {

2 private Missile m;

3

4 public setMissile(Missile m) {

5 this.m = m;

6 }

7

8 public void fireMissile () {

9 m.launch ();

10 }

11 }

Listing 1.3: Setter Dependency Injection

Dependency Injection. While this version can cause problems, if the setter is
not called before each execution of fireMissile, it is sometimes necessary to
allow objects to be initialized after their construction. Possible scenarios for this
include cyclic dependencies and conformance requirements to standards relying
on default consturctors (e.g. JSR-316 for managed Java Beans [23]).

In the previous versions a one to one correspondence between Missile-

Launchpad and its associated Missile objects was implicitly created. This does
not reflect reality and was not the case in the original code. The coupling is
disbanded in listing 1.4 where factory based Dependency Injection is used. Now
new missiles are provided by a factory object (line 9) of the (possibly abstract)
type MissileFactory. This object can be configured to provide arbitrary in-
stances of Missile and does so every time fireMissile is called. In contrast to
listing 1.3, there is no risk of accidentally omitting the creation of new missiles.

1 public class MissileLaunchpad {

2 private final MissileFactory missileFactory;

3

4 MissileLaunchpad(MissileFactory f) {

5 this.missileFactory = f;

6 }

7

8 public void fireMissile () {

9 Missile m = missileFactory.createMissile ();

10 m.launch ();

11 }

12 }

Listing 1.4: Factory Dependency Injection

The advantages mentioned above especially pay of, if a program is to be
composed from multiple Dependency Injection style modules with unmodifiable
source-code (e.g. third party libraries) [12]. In addition testability of such com-
ponents is greatly improved [25], because Mock-Objects can be used to emulate
complex behavior possibly causing unwanted side-effects (in the given example
these would be the start of nuclear missiles on every test run). Further de-
pendencies are explicitly stated, keeping them as precise and local as possible.
Therefore all parts of a program only share essential parts of their state. This
isolates failures and increases maintainability, because changes by error or design
only affect subcomponents and not the program as a whole. To help with the
final wiring of objects and their lifecycle a plethora of frameworks exist for al-
most all object oriented languages [4, 2, 7, 6, 5]. They commonly provide ways to
create standardized factory code, support the notion of scopes and can in some
places automatically fill in missing dependencies. The popularity of Dependency
Injection has even led to affords of standardizing frameworks [18].

4 Translating λ-Terms to Injection Code

This section will explore the structural relation between object instantiation
of Dependency Injection style code and applicative terms. Listing 1.5 shows a

1 class X {

2 public X(Y y, Z z) { ... }

3 }

Listing 1.5: Class with a binary constructor

Java class X with a binary constructor taking arguments of type Y and Z. It

will serve as a placeholder for arbitrary constructor based Dependency Injection
Code throughout the following text. Treating binary constructors is suffice, since
the generalization to n-ary constructors follows from the isomorphism∏

i=1...k

xi ∼= (x1,
∏

i=2...k

xi))

and unary constructors or constructors without arguments need no special prepa-
ration. A new variable can be introduced for the constructor function and its
type denoted as

X : (Y, Z)→ X

meaning that variable X has the function type (Y, Z)→ X taking a tuple of (Y, Z)
as arguments and producing a value of type X. The tuple can be eliminated by
a technique called currying [24]:

X:(Y,Z)→X`X:(Y,Z)→X

y:Y`y:Y z:Z`z:Z

y : Y, z : Z ` (y, z) : (Y, Z)
(∧I)

X : (Y, Z)→ X, y : Y, z : Z ` X(y, z) : X
(→E)

X : (Y, Z)→ X ` λyz.X(y, z) : Y→ Z→ X
(2×→I)

The proof above assumes properly typed arguments x and y exist, applies them to
X and introduces two separate abstractions to eliminate the assumptions. To be
able to reason about purely applicative terms the newly won curried constructor
should be replaced by a fresh variable x, subject to substitution later. This is
allowed, which can be shown by first using the free variables lemma [24]

x : Y→ Z→ X `M : σ

x : Y→ Z→ X, X : (Y, Z)→ X `M : σ

to add the original constructor function to a reasoning environment only involv-
ing x and then applying the substitution lemma [24]

X:(Y,Z)→X`λyz.X(y,z):Y→Z→X
x : Y→ Z→ X, X : (Y, Z)→ X `M : σ

X : (Y, Z)→ X `M [x := λyz.X(y, z)] : σ

to substitute x by the curried form of X. The resulting context is purely applica-
tive. It assigns free variables for every constructor to types either elementary, if
the constructor takes no arguments, or higher order, if it takes one or more ar-
guments. Application of those free variables corresponds to object construction
in the target language. To allow this in a type-safe manner, two main typing
rules are needed [24]:

Γ, x : σ ` x : σ

Γ `M : σ → τ Γ ` N : σ

Γ ` (M)N : τ

The first rule states that free variables are always typeable and the second rule
states that application is typeable, if a matching argument type is supplied. By

the Curry-Howard-Isomorphism the second rule corresponds to modus ponens
[24]:

σ → τ, σ

τ
In this logical interpretation the first rule just states that assumptions are always
valid. If the target language allows to implement equivalents for the combinators
K = λx y. x and S = λx y z. x z (y z), the axioms

φ→ ψ → φ (1)

(φ→ ψ → ϑ)→ (φ→ ψ)→ φ→ ϑ (2)

may be added to the logical interpretation. Then the first rule can even be
omitted by proof of φ → φ and application of Herbrand’s theorem [24]. Listing

1 public class Combinators {

2 public static interface Function <S, T> {

3 public T apply(S x);

4 }

5 public static <S, T> S k(S x, T y) { return x; }

6 public static <R, S, T> R s(Function <S, Function <T, R>> x,

Function <S, T> y, S z) {

7 return x.apply(z).apply(y.apply(z));

8 }

9 }

Listing 1.6: Combinators in Java

1.6 shows a possible (uncurried) implementation of the S and K combinator in
Java. Here generics are used to abstract from concrete types in the same way
that type variables do. Function passing is facilitated by the generic interface
Function. If the target language lacks support for generics and interfaces, a new
version of the combinators could be created per supplied type. The possibil-
ity of describing object construction in an environment only dependent on the
functional equivalent of modus ponens suggests that Dependency Injection style
object construction corresponds to Hilbert-style proofs on a logical level. Table
1 sums up the correspondence.

Subtype polymorphism is an important feature in all object oriented lan-
guages [10]. Nevertheless the previous correspondence does not yet represent it.
One possibility to do so is to extend the type system by introducing a subtyping
relation ≤ and type intersection ∩ allowing for implementation of more than one
interface or multiple inheritance respectively. Additional rules for a consistent
intersection type system are given in [13]. The subtyping relation is chosen to
be transitive and reflexive, exactly like the instanceof-relation in Java [14]:

σ ≤ σ
σ ≤ τ ∧ τ ≤ ρ⇒ σ ≤ ρ

Dependency Injection Lambda Calculus Logic

Constructors Free variables Assumptions

Object construction Application Modus ponens

Objects Primitive typed terms Proven proposition variables

Static functions returning objects Combinators Axioms

Table 1: Correspondence of Dependency Injection, Lambda Calculus and Logic

Classes implementing more than one interface (or inheriting from more than one
base) can be cast to all of these, therefore

σ ∩ τ ≤ σ ∧ σ ∩ τ ≤ τ

which holds for constructor functions as well:

(σ → τ) ∩ (σ → ρ) ≤ σ → (τ ∩ ρ)

Nonelementary typed terms are expected to be contravariant in their arguments
and covariant in their results, which is the same for functions in most object
oriented languages:

σ ≤ σ′ ∧ τ ≤ τ ′ ⇒ σ′ → τ ≤ σ → τ ′

To incorporate subtyping and intersection properly three new rules are added
[13]. First type-safe downcasting is obviously allowed:

Γ `M : σ σ ≤ τ
Γ `M : τ

Second the intersection of several types (which cannot be directly denoted in
Java [14]) can be cast to all of its components

Γ `M : σ ∩ τ
Γ `M : σ

Γ `M : σ ∩ τ
Γ : M : τ

and third restored from them:

Γ `M : σ Γ `M : τ

Γ `M : σ ∩ τ

While the correspondence now covers all important parts of object oriented lan-
guages some corner cases remain. These are usually language specific. A common
example are primitive types (e.g. int, char, ...), which are not captured by the
inheritance system. Generalized proper inclusion of such types is almost impos-
sible, because of their language and sometimes even platform specific semantic.
Nevertheless they can usually be wrapped into objects, as is automatically the
case for Java [14].

5 Implementation

In the previous section applicative terms were related to Dependency Injection
style object construction. This section aims to describe the implementation of
a code generator, named Syringe1, which computes the translation from terms
to code, realizing the morphism r from section 2 diagram 2. Preliminary to this
some elementary design choices have to be made. A target language and an im-
plementation language have to be selected. Since a mapping from every (curried)
constructor function to a free variables will have to be created, it is desirable
to chose an implementation language capable of analyzing constructors of the
target language. Further to improve maintainability and integration in existing
projects the use of a Dependency Injection framework is advisable. Some Depen-
dency Injection frameworks, like Google Guice [2], do not support addressing of
more than one object per type. In the input language context this limits each
type to be inhabitated by only one term. Such a restriction is theoretically possi-
ble using linear logic and the corresponding BCI propositional calculus [24], but
imposes a loss of generality. The Spring Framework [4] for Java can address arbi-
trarily many objects per type. Further it supports easy to create XML artifacts
to describe object instantiation. In combination with the reflection API [1] to an-
alyze existing constructors, Java and Spring XML fragments provide a suitable
implementation and target language. Next the architecture presented in section 2
figure 3 has to be adapted. The resulting architecture is shown in figure 4. Instead

NF
β-Reduction

λ-Term
AST

Constructor
Introspection

Java

Classes

Interpreter Rule Repository

JDOM

Spring

XML

Fragment

Applicative AST
Higher order Rules

Rules

XML AST

Syringe

Fig. 4: Architecture of Syringe

of only supporting applicative terms, full lambda calculus was chosen as input

1 The full source is available on Github: https://github.com/JanBessai/Syringe

language. This is advantageous, if custom combinators are to be introduced in
order to shorten input. However the first stage of Syringe performs β-reduction to
a normal form which may not contain any leftover abstractions. The parser stage
is omitted in figure 4 because it is not essential to the core architecture. It can be
completely skipped, if a code generator is configured to directly output ASTs as
Java objects. Nevertheless a simple parser was implemented using ANTLR [21].
Its grammar, which is adapted to allow top down parsing with highest prece-
dence of abstraction, is shown in listing 1.7. After β-reduction to an applicative

1 grammar Lambda;

2

3 lambda : abstractionLevel;

4

5 variableLevel : ID # variable

6 | ’(’ abstractionLevel ’)’ # parenthesis

7 ;

8

9 applicationLevel :

10 variableLevel variableLevel* # application

11 ;

12

13 abstractionLevel :

14 ’\\’ ID+ ’->’ applicationLevel # abstraction

15 | applicationLevel # passDown

16 ;

17

18 ID : [a -zA -Z]([a -zA-Z0 -9]*);

19 WHITESPACE : [\t\n\r] -> skip;

Listing 1.7: ANTLR Grammar for the lambda calculus

normal form an interpreter uses rules form a repository, in order to map remain-
ing free variables to curried constructor functions and rewrite their application
to an XML-AST. Typechecking is not yet implemented, because it is beyond the
scope of this work, but it is planed for possible future versions of Syringe. The
final AST is currently unparsed by JDOM [3], but the interpreter was designed
independently from the output format of the rules it draws from its repository.
Therefore, if the repository is initialized with rules, which build target code other
than XML (e.g. source code for Java or even other languages), only the unparser
stage is required to change. Figure 5 shows the class diagram for the term model
and the β-reduction engine. Terms are modeled closely to their definition: the
classes Variable, Abstraction and Application match the role of their ab-
stract counterparts. They are generalized by the interface Term, providing meth-
ods to get all identifiers of occurring and free variables. Term construction and
the β-reduction engine are implemented using the builder pattern. An appropri-

Fig. 5: UML class diagram for the Syringe AST and β-reduction engine

ate instance of a subtype of TermBuilder controls how the currently underlying
term is to be manipulated (e.g. by substitution). This way manipulation logic is
separated from the AST implementation itself. The class TermFactory provides
methods to get a fresh TermBuilder starting with a single variable. It depends
on an auxiliary VariableSupply object, which supplies fresh variable names (the
class VariableSupply is not depicted to omit clutter in the diagram). Figure

Fig. 6: Interpreter and rule repository

6 shows the class diagram for the interpreter and rule repository components.
The interpreter is created by a factory which decides for a term in applica-
tive normal form, which specialization to use (ApplicationInterpereter or
VariableInterpreter). Interpreters draw their rules from a mapping between

variable identifiers (strings) and objects. Depending on its currently underly-
ing term the interpreter instance will cast the objects found by lookup in this
repository: either the Provider interface is chosen and its get method called,
if no further arguments are to be passed, or the Function interface is cho-
sen and its apply method is called for an interpreted argument. The mapping
is established and supplied by the class SprinBeanInjectionRepository. Its
method registerBeanConstructor takes an identifier and a Constructor ob-
ject as parameter. The Constructor instance can be obtained by introspection
for any Java class. It is used to create either a DefaultConstructorProvider

or CurriedConstructorFunction object as lookup target. Which of them to
choose is again determined by a builder (XMLBeanBuilder) which first pro-
duces a factory (XMLBeanWithCurriedConstructor) to build its results. The
XMLBeanBuilder is also used by the get and apply methods of Default-

ConstructorProvider and CurriedConstructorFunction in order to append
new nodes to the resulting XML-AST. Instantiation of the builder is handled by
the buildBeansDocument method of XMLBeansDocumentFactory.

Figure 7 shows the class diagram for a small GUI-Framework based on De-
pendency Injection. It is comprised of a panel, which can show a label or a
button. Both show a text with a custom font style. If the button is clicked a
message box pops up, which again shows a text. This framework serves as an ex-
ample for code generation with Syringe. An interactive demo allows to manually
test the code generator. Figure 8 shows a screenshot in which the term

(λx y . panel (button y (messageBoxx)))hello ciao

was used as input. The text boxes above and below the input area on the left
show the repository of available constructor functions and the generated output
in text form. The input was successfully resolved to the normal form

(panel ((button ciao) (messageBoxhello)))

which was translated to the human readable Spring XML fragment from listing
1.8. The right-hand side of figure 8 shows the instantiated GUI objects after
the button, labeled “ciao”, was clicked and its message box appeared.

Fig. 7: Dependency Injection style GUI Framework

Fig. 8: Screenshot: Syringe demo application

1 <?xml version="1.0" encoding="UTF -8" standalone="no"?>

2 <beans xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http :// www.springframework.org/schema/beans

http :// www.springframework.org/schema/beans/spring -beans.xsd"

xmlns="http ://www.springframework.org/schema/beans">

3 <bean

class="edu.udo.cs.ls14.syringe.demo.components.Panel"

id="panel">

4 <constructor -arg index="0" ref="button"/>

5 </bean>

6 <bean

class="edu.udo.cs.ls14.syringe.demo.components.Button"

id="button">

7 <constructor -arg index="0" ref="ciao"/>

8 <constructor -arg index="1" ref="messageBox"/>

9 </bean>

10 <bean

class="edu.udo.cs.ls14.syringe.demo.components.Hello"

id="hello"/>

11 <bean

class="edu.udo.cs.ls14.syringe.demo.components.MessageBox"

id="messageBox">

12 <constructor -arg index="0" ref="hello"/>

13 </bean>

14 <bean

class="edu.udo.cs.ls14.syringe.demo.components.Ciao"

id="ciao"/>

15 </beans>

Listing 1.8: Generated XML fragment

6 Related work

One of the first papers on the generation of programs by composition was written
by Parnas in 1976 [20]. Since then a branch of programming, called Generative
Programming, has been developed, which exclusively deals with generating pro-
grams. The book by Czarnecki and Eisenecker [10] studies this field in great
detail. Almost arbitrary input and output language combinations can be chosen
for a code generator. In [17] Lämmel even presents a framework to transform
any context free grammars into one another. Applicative terms have been used
as a generation source mostly in compilers for functional languages. The book
by Peyton-Jones [16] gives a good introduction into compiling such languages in
general and the newer paper [19] describes an efficient real world approach with
a low level target language. Some modern functional programming languages
like idris [8] are reduced to a mostly applicative term model during compilation.
Finally in the context of AI-Planning the paper by Düdder, Grabe, Martens,
Rehof and Urzyczyn [11] describes how to automatically synthesize intersection
typed terms and to build GUIs from them. Further results on the complexity of
such a synthesis are given in [22]. A very complete overview on the properties
of the lambda calculus and type systems in general is given by Sørensen and
Urzyczyn [24] and on intersection types in special by Ghilezan in [13].

7 Summary and Outlook

Code generation from applicative terms was studied with a special focus on
Dependency Injection. In section 2 code generation was identified as a process
translating code while obeying its semantic. The aspect of semantic equality was
described on an abstract level using the concept of bisimilarity. A common pro-
gram architecture to compute the translation function of code generators was
presented. Applicative terms were identified as a well suited input language with
very few requirements on potential output languages. In section 3 the architec-
tural design pattern Dependency Injection was introduced. Its variations and
advantages were discussed. The threefold correspondence between construction
of Dependency Injection style objects, applicative terms and Hilbert-style proofs
was analyzed in section 4. Next the results were put to a practical use. The im-
plementation and design choices of a complete code generator, called Syringe,
were discussed in section 5. An application to create GUIs was demonstrated,
showing the potential of the technique. The last part gave an overview of related
work.

A lot of interesting further research topics came up: The correspondence
between dependency injection, applicative terms and logic could be analyzed, if
setter and factory Dependency Injection are taken into account. Formal proof
of its Bisimulation properties should be pursued. Further study of the role of
linear logic for frameworks like Google Guice could provide interesting insights.
Finally the promising results of the Syringe demo application definitely justify
further development of the tool.

Bibliography

[1] Java reflection API (2012), http://docs.oracle.com/javase/7/docs/

api/java/lang/reflect/package-summary.html, Checked: Feb 22 2013
[2] Guice Framework for Java (2013), http://code.google.com/p/

google-guice/, Checked: Feb 18 2013
[3] JDOM XML processing engine (2013), www.jdom.org, Checked: Feb 22 2013
[4] Spring Framework for Java (2013), http://www.springsource.org/

spring-framework, Checked: Feb 18 2013
[5] Spring Python Framework (2013), http://springpython.webfactional.

com/, Checked: Feb 18 2013
[6] Typhoon Framework for ObjectiveC (2013), http://www.

typhoonframework.org/, Checked: Feb 18 2013
[7] Unity Container for .NET (2013), http://msdn.microsoft.com/en-us/

library/dd203101.aspx, Checked: Feb 18 2013
[8] Brady, E.: The Idris programming language (2013), http://idris-lang.

org/, Checked: Feb 22 2013
[9] Church, A.: A Set of Postulates for the Foundation of Logic. Annals of

Mathematics 33(2), pp. 346–366 (1932), http://www.jstor.org/stable/
1968337, Checked: Feb 18 2013

[10] Czarnecki, K., Eisenecker, U.: Generative Programming Methods, Tools,
and Applications. Addison-Wesley, Amsterdam, Netherlands (2000)

[11] Düdder, B., Garbe, O., Martens, M., Rehof, J., Urzyczyn, P.: Using In-
habitation in Bounded Combinatory Logic with Intersection Types for GUI
Synthesis. ITRS Intersection Types and Related Systems (2012)

[12] Fowler, M.: Inversion of Control Containers and the Dependency In-
jection pattern (2004), http://martinfowler.com/articles/injection.
html, Checked: Feb 13 2013

[13] Ghilezan, S.: Strong Normalization and Typability with Intersection Types.
Notre Dame Journal of Formal Logic 37(1), 44–52 (1996)

[14] Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: Java Lan-
guage and Virtual Machine Specifications. Tech. rep., Oracle Amer-
ica, Inc. (2012), http://docs.oracle.com/javase/specs/jls/se7/html/
index.html, Checked: Feb 22 2013

[15] Jacobs, B., Rutten, J.: A Tutorial on (Co)Algebras and (Co)Induction.
EATCS Bulletin 62, 62–222 (1997)

[16] Jones, S.: The Implementation of Functional Programming Languages.
Prentice-hall International Series in Computer Science, Prentice-Hall
(1987), http://books.google.co.in/books?id=fZdQAAAAMAAJ, Checked:
Feb 22 2013

[17] Lämmel, R.: Grammar Adaptation. In: Proc. Formal Methods Europe
(FME) 2001. LNCS, vol. 2021, pp. 550–570. Springer-Verlag (2001)

[18] Lee, B., Johnson, R., et al.: JSR 330: Dependency Injection for Java.
Tech. rep., Java Community Process (2009), http://www.jcp.org/en/

jsr/detail?id=330, Checked: Feb 18 2013

[19] Marlow, S., Peyton Jones, S.L.: Making a fast curry: push/enter vs. eval/ap-
ply for higher-order languages. Journal of Functional Programming 16(4-5),
415–449 (2006)

[20] Parnas, D.L.: On the Design and Development of Program Families. IEEE
Trans. Software Eng. 2(1), 1–9 (1976)

[21] Parr, T.: ANTLR parser generator (2013), www.antlr.org, Checked: Feb
22 2013

[22] Rehof, J., Urzyczyn, P.: Finite Combinatory Logic with Intersection Types
(Extended Version). Tech. Rep. 834, Technische Universität Dortmund,
Department of Computer Science, Dortmund, Germany (Feb 2011)

[23] Shannon, B., Chinnici, R., et al.: JSR 316: JavaTM Platform, Enterprise
Edition 6 (Java EE 6) Specification. Tech. rep., Java Community Pro-
cess (2009), http://www.jcp.org/en/jsr/detail?id=316, Checked: Feb
15 2013

[24] Sørensen, M.H.B., Urzyczyn, P.: Lectures on the Curry-Howard Iso-
morphism (1998), http://ls14-www.cs.tu-dortmund.de/images/d/db/

Curry-howard.pdf, Checked: Jan 13 2013
[25] Wolter, J., Ruffer, R., Hevery, M.: Guide: Writing Testable Code (2008),

http://misko.hevery.com/attachments/Guide-Writing%20Testable%

20Code.pdf, Checked: Feb 15 2013

